Wqos: homework assignment and midterm exam

Jean Goubault-Larrecq
LSV, ENS Paris-Saclay

Turn your solution in by October 18th, 2019!

Note: be as clear as possible. If I cannot understand you, this won’t help
you obtain a good grade. Specific hints: (1) write, do not scribble; (2) if I
use a specific notation, use the same; (3) use the definitions and results of the
lecture notes—if you know an equivalent definition from the literature but the
equivalence is not proved in the lecture notes, do not use it (as a last resort,
include the proof of equivalence); (4) justify every claim you make, by a proof, by
a definition, by a previous question, or by a theorem (preferentially use theorem
names, such as “Higman’s Lemma”, rather than numbers); (5) find the simplest
possible proof argument.

Also, the final exam may contain sequels to some of the questions asked
here—who knows.

Section 2 depends on Section 1, and Section 4 partly depends on Section 3.
Those are the only dependencies.

1 Induced subgraphs

A graph G is a pair (V,E), where V is the finite set of vertices of G, and
E C V x V is the finite set of edges of G. We will always assume that V is
a subset of some fixed infinite subset such as N (otherwise the class of graphs
would not even be a set).

A graph homomorphism f: (V,E) — (V',E')isamap f: V — V' such that
for every (s,t) € E, (f(s), f(t)) € E'. Tt is injective if and only if it is injective as
a map from V to V’. It is an embedding if and only if for all s,t € V, (s,t) € E
is equivalent to (f(s), f(t)) € E'.

We say that a graph G is a subgraph of a graph G’ if and only if there is an
injective homomorphism from G into G’. It is an induced subgraph if and only
if there is an embedding of G into G'. For example, the graph with two vertices
and no edge is a subgraph of the graph with the same two vertices and one edge
between them, but is not an induced subgraph.

It is helpful to think of graphs up to isomorphism, that is, up to (bijective)
renaming of their vertices. Up to isomorphism, an induced subgraph of G =
(V, E) is uniquely determined by a subset V' of V', as (V/, EN (V' x V")).

Question 1 Show that the induced subgraph relation is not a well-quasi-ordering.



Question 2 One can show that following problem:
INPUT: two graphs H, G,
QUESTION: is H an induced subgraph of G?
is NP-complete. Show that, for fized H, the following problem:
INPUT: a graph G;
QUESTION: is H an induced subgraph of G?
can be solved in polynomial time. Give explicitly the degree of the poly-
nomial, too.

2 m-~partite cographs
For every m € N, let %,,, be the signature consisting of:
e constants (i.e., functions of arity 0) 4, 1 < i < m;

e function symbols edger of variable arity, for every binary relation R C
{1, ,m}2.

Implicitly, all of those are pairwise distinct. In particular, R # i for all binary
relations R and constants i.

Let T'M,,, be the set of terms built on those symbols, restricted in such a way
that the constants i are always applied to an empty list of argument; instead
of writing i(), we simply write i. Hence edgegr(1, edges(1,2),edges(2,3)) is in
TM,,, but not 1(2, 3).

The elements of T'M,,, are called tree models on the m colors 1, ..., m.

A colored graph (with colors in {1,--- ,m}) is a pair of a graph G = (V| E)
with a (coloring) map A\: V. — {1,--- ,m}. Its underlying graph is G. We will
sometimes confuse a colored graph with its underlying graph, and that will allow
us to make sense of the ‘induced subgraph’ and ‘subgraph’ relations on colored
graphs.

The semantics [t] of a tree model ¢ is a colored graph defined as follows:

e for every constant ¢ € {1,--- ,m}, [¢] is the colored graph (({*},0), {x —
1}) with one vertex * colored ¢, and no edge;

e for every binary relation R C {1,--- ,m}?, [edgegr(ti,--- ,t,)] is the graph
obtained by taking the disjoint union of the colored graphs [t],, 1 < k < n,
and for each pair (4,j) € R, for each pair of positions k # £ (1 < k,£ < n)
in the argument list, adding an edge from each i-colored vertex of [tx]
to each j-colored vertex of [t¢]. As a very special case, [edger()] is the
empty graph.

In the sequel, we fix m € N.

Question 3 Find a well-quasi-ordering < on 3, such that, for all s,t € T M, such
that s < t, [s] is an induced subgraph of [¢]. Justify.



Question 4 An m-partite cograph is any graph that one can write as [t] for some
t € TM,,. Show that the induced subgraph relation is wqo on the set of
m-partite cographs.

Question 5 Given any m-partite cograph G and an induced subgraph H of G, show
that H is also an m-partite cograph.

Question 6 Let P be any hereditary property of graphs. By ‘hereditary’ I mean that
if P is true of a graph G, and H is an induced subgraph of G, then P
must also be true of H. Show that the following problem:

INPUT: an m-partite cograph G;

QUESTION: is P true of G?
is decidable in polynomial time, for every hereditary property of graphs.
Remember that both m and P are fixed parameters, not inputs to the
problem.

Question 7 3-colorability is the following question:

INPUT: a graph G;

QUESTION: is there a way of assigning each vertex of G a color
from {1,2,3} in such a way that every edge connects vertices of different
colors?

This problem is well-known to be NP-complete. Can we decide it in
polynomial time when the input is required to be an m-partite cograph?

Question 8 What are the minimal non-3-colorable 1-partite cographs? By minimal,
we mean with respect to the induced subgraph relation.

3 Upwards-closed and Downwards-closed subsets
of X*

In this section, we fix a finite alphabet X, ordered by equality. We quasi-order
¥* by the embedding quasi-ordering <,. (Although < is =, really, we refrain
from writing =,, which would probably be confusing.) As usual, 1 denotes
upward closure and | denotes downward closure.

We also assume that you have basic knowledge on regular languages and
finite automata. For every regular expression L, we will write L’ for the regular
expression L + €, where a € ¥, denoting the language L U {e}.

Question 9 Given any finite word w € ¥*, show that | w is a regular language. More:
show that one can compute a regular expression denoting | w from any
word w given in input.

Question 10 Given any finite word w € ¥*, show that 1w is a regular language. More:
show that one can compute a regular expression denoting Tw from any
word w given in input.



Question 11 Show that every upwards-closed subset U of ¥* is a regular language.
Given a basis for U, show that one can even compute a regular expression
whose language is U.

Question 12 Deduce that every downwards-closed subset D of 3* is a regular language,
and again, that given a basis of the complement of D, we can compute a
regular expression whose language is D.

4 The Valk-Jantzen-GL algorithm

Let X be a wqo.
We imagine that we can represent the elements of X on a computer, and
also the downwards-closed subset D of X, and that:

e given x,y € X, one can decide whether z < y;

e the map |:  — |z is computable (from X to the set of downwards-closed
subsets of X);

e the function 0: A — X \ 1 A is computable (from the set of finite subsets
of A to the set of downwards-closed subsets of X).

As an example, the whole purpose of Section 3 was to convince you that those
assumptions are true when X = ¥* provided that you represent downwards-
closed subsets of 3* as regular expressions.

Imagine you are given some piece of data, and you know that this piece of
data represents an upwards-closed subset U of X, but you don’t know a basis
of U. Instead, we assume that:

(H) we are given access to an oracle Oy that, given any downwards-
closed subset D of X, decides whether D intersects U.

(‘Oracle’ is computability-speak. If you are an ML or Haskell programmer,
what I am saying is that you are given a function Oy as input, such that Oy (D)
returns true if D intersects U, and false otherwise. The ‘piece of data’ above
can be taken as simply that function Opy. The VJGL algorithm mentioned
below—see Figure 1—is therefore simply a second-order function taking Oy as
input.)

Question 13 Show that you can decide, given x € X, whether x € U.
Question 14 Show that you can decide, given a finite subset A of X, whether U C 1 A.

Question 15 We run the algorithm of Figure 1. I am not claiming that it is practical!
The algorithm takes the piece of data representing U as input, and has
access to the oracle Oy. As remarked above, this can be expressed more
simply by saying that VJGL takes Oy as input.

The tests x € U and U C 1T A at lines 4 and 6 stand for the algorithms
you have described in Question 13 and Question 14 respectively.



Question 16

Question 17

def VIGL (Op):
A:=10
for each z € X:
if reU and x ¢ 1T A:
A:=AU{z}
if U C1TA:
break # exit for loop

return A

Figure 1: The VJGL algorithm

What does algorithm VJGL compute? You should justify your answer:
why it computes what you claim it does, and also why it terminates.

Let X be a finite alphabet (ordered by equality again). Imagine that U is
an upwards-closed subset of ¥*, which you do not know. However, imagine
that, for every regular expression L, you are allowed to test whether the
language of L intersects U, through an oracle Oy. Show that this gives
you complete knowledge of U, in the sense that there is a way to compute
a finite basis of U from just those inputs. (Formally, define an algorithm
that takes the oracle Oy as input, and returns a finite basis for U.)

For this question, you need to know that given a context-free grammar
G and a regular expression L, we can compute a context-free grammar—
which we write as G N L—whose language is the intersection of the lan-
guages of G and L. (Beware that we cannot in general compute the
intersection of two context-free grammars.) It is also decidable whether
the language of a context-free grammar given as input is empty or not.
Show that there is an algorithm that, given a context-free grammar G as
input, computes a regular expression L whose language is the set of words
that contains a subword in the language of G.



