
Introduction to MPRI course 2.33
An introduction

Olivier Bournez
LIX, Ecole Polytechnique, France

MPRI

2018

1

Menu

Back to Foundations of Computer Science

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Some applications

The subject of this course

2

What is a computer ?

Laptop

Supercomputer

Servers

3

What is a computer ?

Laptop Supercomputer

Servers

3

What is a computer ?

Laptop Supercomputer

Servers

3

What is a computer ?

Laptop Supercomputer

Servers

The highest-selling
single computer model

of all time

source: Guinness World Records

3

What is a computer ?

Laptop Supercomputer

Servers
Commodore 64

3

What is a computer ?

ENIAC

Kelvin’s Tide Predicter

Admiralty Fire Control
Table

Differential Analyzer

4

What is a computer ?

ENIAC Kelvin’s Tide Predicter

Admiralty Fire Control
Table

Differential Analyzer

4

What is a computer ?

ENIAC Kelvin’s Tide Predicter

Admiralty Fire Control
Table

Differential Analyzer

4

What is a computer ?

ENIAC Kelvin’s Tide Predicter

Admiralty Fire Control
Table

Differential Analyzer

4

What is a computer ?

Difference Engine

Linear Planimeter

Slide Rule

Antikythera mechanism

5

What is a computer ?

Difference Engine

Linear Planimeter

Slide Rule

Antikythera mechanism

5

What is a computer ?

Difference Engine

Linear Planimeter

Slide Rule

Antikythera mechanism

5

What is a computer ?

Difference Engine

Linear Planimeter

Slide Rule

Antikythera mechanism

5

A first classification

space

time

discrete

continuous

6

A first classification

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

6

A first classification

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

Differential Analyzer
Analog Circuits

Planimeter
Antikythera Tide Predicter

AFCT

6

A first classification

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

Differential Analyzer
Analog Circuits

Planimeter
Antikythera Tide Predicter

AFCT

Difference Engine

Slide Rule

6

A first classification

Not general purpose

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

Differential Analyzer
Analog Circuits

Planimeter
Antikythera Tide Predicter

AFCT

Difference Engine

Slide Rule

6

A first classification

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

Differential Analyzer
Analog Circuits

6

A first classification

Mathematical model

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

Discrete
Dynamical System

y(t + 1) = f (y(t))

Differential Analyzer
Analog Circuits

Continuous
Dynamical System

y ′ = f (y)

6

A first classification

Computability model

space

time

discrete

continuous

laptop server

supercomputer

Digital Circuits

ENIAC Commodore

Turing machine

Differential Analyzer
Analog Circuits

GPAC y ′ = p(y)

6

More models!

Physical Computer Model
Laptop, ... Turing machines

λ-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

Church-Turing Thesis

All reasonable models of computation are equivalent.

Implicit corollary

Some models are too general/unreasonable.

7

More models!

Physical Computer Model
Laptop, ... Turing machines

λ-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

Church-Turing Thesis

All reasonable models of computation are equivalent.

Implicit corollary

Some models are too general/unreasonable.

7

More models!

Physical Computer Model
Laptop, ... Turing machines

λ-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

Church-Turing Thesis

All reasonable models of computation are equivalent.

Implicit corollary

Some models are too general/unreasonable.

7

More models!

Physical Computer Model
Laptop, ... Turing machines

λ-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

Church-Turing Thesis

All reasonable models of computation are equivalent.

Implicit corollary

Some models are too general/unreasonable.

7

Shannon’s General Purpose Analog Computer

The GPAC is a mathematical abstraction from Claude
Shannon (1941) of the Differential Analyzers.

[Graça Costa 03]: This corresponds to polynomial Ordinary
Differential Equations (pODEs), i.e. continuous time
dynamical systems of the form{

y(0)= y0

y ′(t)= p(y(t))

where
I y : I → Rd , t ∈ I
I and p is a (vector of) polynomials.

8

A machine from 20th Century: Differential analyzers

Vannevar Bush’s 1938 mechanical

Differential Analyser

Underlying principles: Lord
Kelvin 1876.

First ever built: V. Bush
1931 at MIT.

Applications: from gunfire
control up to aircraft design

Intensively used during U.S.
war effort.

Electronic versions from late
40s, used until 70s

9

A machine from 21th Century: Analog Paradigm Model-1

http://analogparadigm.com

Fully modular

Basic version.
I 4 integrators, 8 constants, 8 adders, 8 multipliers.
I 14 kgs.

10

11

The General Purpose Analog Computer
Shannon’s 41 presentation:

Basic units:

k e0e1

constant: e0 = ke1

+Π e0
e1
e2

product: e0 = e1e2

e0
e1
e2

summer: e0 = −(e1 + e2)

e0

e(0)

e1

integrator:
e0 = −

∫ t
0 (e1(u)du + e(0))

(Feedback connections are allowed).

A function is GPAC-generated if it corresponds to the output
of some unit of a GPAC.

12

The General Purpose Analog Computer
Shannon’s 41 presentation:

Basic units:

k e0e1

constant: e0 = ke1

+Π e0
e1
e2

product: e0 = e1e2

e0
e1
e2

summer: e0 = −(e1 + e2)

e0

e(0)

e1

integrator:
e0 = −

∫ t
0 (e1(u)du + e(0))

(Feedback connections are allowed).

A function is GPAC-generated if it corresponds to the output
of some unit of a GPAC.

12

Cosinus and sinus: x = cos(t), y = sin(t)

−1

cos(t) −sin(t)

x y


x ′(t)= −y(t)
y ′(t)= x(t)
x(0)= 1
y(0)= 0

⇒
{
x(t)= cos(t)
y(t)= sin(t)

13

Menu

Back to Foundations of Computer Science

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Some applications

The subject of this course

14

Let’s play the following game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations over Rd of type{

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials1

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1....m(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.

1With y0, and coefficients among 0, 1,−1.
15

Let’s play the following game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations over Rd of type{

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials1

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1....m(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.

1With y0, and coefficients among 0, 1,−1.
15

Let’s play the following game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations over Rd of type{

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials1

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1....m(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.

1With y0, and coefficients among 0, 1,−1.
15

Let’s play the following game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations over Rd of type{

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials1

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1....m(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.

1With y0, and coefficients among 0, 1,−1.
15

Let’s play the following game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations over Rd of type{

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials1

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1....m(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.
1With y0, and coefficients among 0, 1,−1.

15

Let’s play the following game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations over Rd of type{

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials1

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1....m(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.
1With y0, and coefficients among 0, 1,−1.

15

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.

e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).

tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.

sin is the first projection of y ′ = (y ′1, y
′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).

cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.

sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).

cosh its second projection.
1

1+t is the solution of y ′ = −y2, y(0) = 1
1

1+t2 is the first projection of y ′ = (−y2y
2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).

arctan is the first projection of y ′ = (y2,−y3y
2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).

π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

16

Polynomial ODE descriptive mathematics

2 is +1(1), with +1 solution of y ′ = 1, y(0) = 1.

3 is +2(1), with +2 first projection of solution of
y ′ = (y2 + y3, 0, 0), y(0) = (1, 1, 1).

. . .

k is +k−1(1), with +k−1 first projection of solution of
y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (1, 1, . . . , 1).

−k is −k−1(−1), with −k−1 first projection of solution of
y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (−1,−1, . . . ,−1).

0 + z is the solution of +′(0, t) = 1, +(0, 0) = 0.

y + z is the solution of +′(t, z) = 1, +(0, z) = z .

0 ∗ z is the solution of ∗′(0, t) = 0, ∗(0, 0) = 0.

y ∗ z is the solution of ∗′(t, z) = z , +(0, z) = 0.

17

Polynomial ODE descriptive mathematics

2 is +1(1), with +1 solution of y ′ = 1, y(0) = 1.

3 is +2(1), with +2 first projection of solution of
y ′ = (y2 + y3, 0, 0), y(0) = (1, 1, 1).

. . .

k is +k−1(1), with +k−1 first projection of solution of
y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (1, 1, . . . , 1).

−k is −k−1(−1), with −k−1 first projection of solution of
y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (−1,−1, . . . ,−1).

0 + z is the solution of +′(0, t) = 1, +(0, 0) = 0.

y + z is the solution of +′(t, z) = 1, +(0, z) = z .

0 ∗ z is the solution of ∗′(0, t) = 0, ∗(0, 0) = 0.

y ∗ z is the solution of ∗′(t, z) = z , +(0, z) = 0.

17

Polynomial ODE descriptive mathematics
1

1+t is the solution of y ′ = −y2, y(0) = 1
1
2 is 1

1+1

ln(1 + t) is the solution of y ′ = (y1,−y2
2), y(0) = (0, 1).

ln(2) is ln(1 + 1).

However the current game is not so interesting:

I 1
t and ln(t) are not in that class.

• 1
t

is the solution of y ′ = −y 2, y(1) = 1,
• ln(1 + t) is the solution of y ′ = (y1,−y 2

2), y(1) = (0, 1).

I 1
2+t is not in that class:

• 1
2+t

is the solution of y ′ = −y 2, y(0) = 1/2.

Let’s generalize a little bit our game
I y(x0) = y0 instead of y(0) = y0, with y0 pODE computable

constant.
I n-variables functions.

18

Polynomial ODE descriptive mathematics
1

1+t is the solution of y ′ = −y2, y(0) = 1
1
2 is 1

1+1

ln(1 + t) is the solution of y ′ = (y1,−y2
2), y(0) = (0, 1).

ln(2) is ln(1 + 1).

However the current game is not so interesting:

I 1
t and ln(t) are not in that class.

• 1
t

is the solution of y ′ = −y 2, y(1) = 1,
• ln(1 + t) is the solution of y ′ = (y1,−y 2

2), y(1) = (0, 1).

I 1
2+t is not in that class:

• 1
2+t

is the solution of y ′ = −y 2, y(0) = 1/2.

Let’s generalize a little bit our game
I y(x0) = y0 instead of y(0) = y0, with y0 pODE computable

constant.
I n-variables functions.

18

Polynomial ODE descriptive mathematics
1

1+t is the solution of y ′ = −y2, y(0) = 1
1
2 is 1

1+1

ln(1 + t) is the solution of y ′ = (y1,−y2
2), y(0) = (0, 1).

ln(2) is ln(1 + 1).

However the current game is not so interesting:

I 1
t and ln(t) are not in that class.

• 1
t

is the solution of y ′ = −y 2, y(1) = 1,
• ln(1 + t) is the solution of y ′ = (y1,−y 2

2), y(1) = (0, 1).

I 1
2+t is not in that class:

• 1
2+t

is the solution of y ′ = −y 2, y(0) = 1/2.

Let’s generalize a little bit our game
I y(x0) = y0 instead of y(0) = y0, with y0 pODE computable

constant.
I n-variables functions.

18

A better game: n-variables functions, not so restricted
initial condition

We start from

0, 1, −1

and we consider (projections of) solutions of ordinary
differential equations over Rd of type{

y(x0) = y0

Jacobiany(x) = p(y(x))

where p is a (vector of) polynomials, y0 is in the class.

x

f (x)=y1(x)
f (1)

1

Terminology:

Such a function f (x) = y1...m(y) will be said to be generated.

f (1) will then be called a (pODE) computable real.
19

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2

,y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

20

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2

,y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

20

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0

y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2

,y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

20

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0

y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2,y4 = cos y2 ,y5 = ee
y1 +t

,y6 = ey1

20

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)

y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0

y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2,y4 = cos y2 ,y5 = ee
y1 +t

,y6 = ey1

20

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)

y ′5 = y5(y6y
2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1

y5(0) = e
y6(0) = 1

considering y3 = sin y2,y4 = cos y2 ,y5 = ee
y1 +t

,y6 = ey1

20

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e

y6(0) = 1

considering y3 = sin y2,y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

20

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2,y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

20

Facts and Properties
The class of generated functions include all previously
mentioned functions, and most of the (analytic) common
functions.

It is stable by many operations:

I if f and g can be generated, then f + g , f − g , fg , 1
f , f ◦ g

can be generated.

It is stable by ODE solving:

I if f can be generated, and y satisfies y ′ = f (y) then y can be
generated.

A generated function must be analytic2.

I Famous analytic non-generable functions: [Shannon 41]
• Euler’s Gamma function Γ(x) =

∫∞
0

tx−1e−tdt [Hölder 1887]
• Riemann’s Zeta function ζ(x) =

∑∞
k=0

1
kx

[Hilbert].

The set of pODE computable constants is a field.
2Equals to its Taylor expansion in every point.

21

Facts and Properties
The class of generated functions include all previously
mentioned functions, and most of the (analytic) common
functions.

It is stable by many operations:

I if f and g can be generated, then f + g , f − g , fg , 1
f , f ◦ g

can be generated.

It is stable by ODE solving:

I if f can be generated, and y satisfies y ′ = f (y) then y can be
generated.

A generated function must be analytic2.

I Famous analytic non-generable functions: [Shannon 41]
• Euler’s Gamma function Γ(x) =

∫∞
0

tx−1e−tdt [Hölder 1887]
• Riemann’s Zeta function ζ(x) =

∑∞
k=0

1
kx

[Hilbert].

The set of pODE computable constants is a field.
2Equals to its Taylor expansion in every point.

21

Menu

Back to Foundations of Computer Science

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Some applications

The subject of this course

22

Polynomial ODE descriptive mathematics

A generated function must be analytic.

A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

23

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(x)x

x

first projection of y ′ = ((1− y2
2)y3 + y2, 1− y2

2 , 1),
y(0) = (0, 0, 0).

23

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(2x)x

x

first projection of y ′ = (y4(1− y2
2)y3 + y2, y4(1− y2

2), 1, 0),
y(0) = (0, 0, 0, 2).

23

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(100x)x

x

first projection of y ′ = (y4(1− y2
2)y3 + y2, y4(1− y2

2), 1, 0),
y(0) = (0, 0, 0, 100).

23

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “

e−µ

uniformly close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(Kx)x

x

first projection of y ′ = (y4(1− y2
2)y3 + y2, y4(1− y2

2), 1, 0),
y(0) = (0, 0, 0,K).

23

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “e−µ uniformly close” to a generable function:
I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(eµx)x

x

first projection of y ′ = (y4(1− y2
2)y3 + y2, y4(1− y2

2), 0, 0),
y(0) = (0, 0, 0, eµ).

23

Alternative statement
|x | is “uniformly close” to a generable function:

I Given µ, we need to feed eµ to the initial condition.
I Can we avoid this “strange”/”unnatural” dependance in the

initial condition?
I Yes, if we don’t ask for real time computation!

Replace real-time concept: By a more modern concept:

f (x) must be produced
at time x

with precision e−µ

f (x) must be produced
at some time T = T (x)

with precision e−µ

x

f (x)=y1(x)

tT

f (x)=y3(T)

y(0)

y(0) = F (0, µ) y(0) = (x , µ, y0)
f (x) = y1(x) f (x) = y1(T)

24

Alternative statement
|x | is “uniformly close” to a generable function:

I Given µ, we need to feed eµ to the initial condition.
I Can we avoid this “strange”/”unnatural” dependance in the

initial condition?
I Yes, if we don’t ask for real time computation!

Replace real-time concept: By a more modern concept:

f (x) must be produced
at time x

with precision e−µ

f (x) must be produced
at some time T = T (x)

with precision e−µ

x

f (x)=y1(x)

tT

f (x)=y3(T)

y(0)

y(0) = F (0, µ) y(0) = (x , µ, y0)
f (x) = y1(x) f (x) = y1(T)

24

This is a more general notion of computability

Key fact: Any generated function is computable in that sense.

Illustration for |x |

I Discrete time Computer Science reasoning: Given µ,

1. Compute e−µ

2. Then compute abs(x , µ) = tanh(e−µx)x

i.e. previous function
starting from (0, 0, 0, eµ)

I But we are in a continuous time world:

both steps can be done simultaneously !

25

This is a more general notion of computability

Key fact: Any generated function is computable in that sense.

Illustration for |x |

I Discrete time Computer Science reasoning: Given µ,

1. Compute e−µ

2. Then compute abs(x , µ) = tanh(e−µx)x

i.e. previous function
starting from (0, 0, 0, eµ)

I But we are in a continuous time world:

both steps can be done simultaneously !

25

This is a more general notion of computability

Key fact: Any generated function is computable in that sense.

Illustration for |x |

I Discrete time Computer Science reasoning: Given µ,

1. Compute e−µ

2. Then compute abs(x , µ) = tanh(e−µx)x

i.e. previous function
starting from (0, 0, 0, eµ)

I But we are in a continuous time world:

both steps can be done simultaneously !

25

This is a more general notion of computability

Key fact: Any generated function is computable in that sense.

Illustration for |x |

I Discrete time Computer Science reasoning: Given µ,

1. Compute e−µ

2. Then compute abs(x , µ) = tanh(e−µx)x

i.e. previous function
starting from (0, 0, 0, eµ)

I But we are in a continuous time world:

both steps can be done simultaneously !

25

This is a more general notion of computability

Illustration for |x | continued:

I Simple idea: consider a path y(t) going from
y(0) = (x , µ, . . .) to y(T) = (x , µ, abs(x , µ), . . .)

where abs(x , µ) = tanh(e−µx)x is previous function.

• For example, for T = 1,

y(t) = (x , µ, abs(tx , tµ), t)

solution of y′(t) = (0, 0, py(y(t)), 1), y(0) = (x, µ, 1, 1),
with

I Graphically:

y3(T)

x

with |x | − e−µ 6 y3(T) 6 |x |+ e−µ, x = y1(0), µ = y2(0)

26

This is a more general notion of computability

Illustration for |x | continued:

I Simple idea: consider a path y(t) going from
y(0) = (x , µ, . . .) to y(T) = (x , µ, abs(x , µ), . . .)

where abs(x , µ) = tanh(e−µx)x is previous function.

• For example, for T = 1,

y(t) = (x , µ, abs(tx , tµ), t)

solution of y′(t) = (0, 0, py(y(t)), 1), y(0) = (x, µ, 1, 1),
with
py (y(t)) = (1− tanh2(etµtx))(µetµtx + etµx) + x tanh(etµtx)

I Graphically:

y3(T)

x

with |x | − e−µ 6 y3(T) 6 |x |+ e−µ, x = y1(0), µ = y2(0)

26

This is a more general notion of computability
Illustration for |x | continued:

I Simple idea: consider a path y(t) going from
y(0) = (x , µ, . . .) to y(T) = (x , µ, abs(x , µ), . . .)

where abs(x , µ) = tanh(e−µx)x is previous function.

• For example, for T = 1,

y(t) = (x , µ, abs(tx , tµ), t)

solution of y′(t) = (0, 0, py(y(t)), 1), y(0) = (x, µ, 1, 1),
with
py (y(t)) =
(1−tanh2(ey4y2y4y1))(y2e

y4y2y4y1 +ey4y2y1)+y1 tanh(ey4y2y4y2)

I Graphically:

y3(T)

x

with |x | − e−µ 6 y3(T) 6 |x |+ e−µ, x = y1(0), µ = y2(0)

26

If you want only polynomial ODEs:
I Do as in previous exercice for the system for |x |:


y ′1 = 0
y ′2 = 0
y ′3 = (1− tanh2(ey4y2y4y1))(y2ey4y2y4y1 + ey4y2y1) + y1 tanh(ey4y2y4y2)
y ′4 = 1
y1(0) = x
y2(0) = µ
y3(0) = 1
y4(0) = 1

y3(T)

x

Other paths could be used.
E.g. if one wants better and better precision, or that this
works even for t ≥ 1.

y(t) = (x , µ, abs(min (tx , 1), tµ), t)

27

If you want only polynomial ODEs:
I Do as in previous exercice for the system for |x |:


y ′1 = 0
y ′2 = 0
y ′3 = (1− tanh2(ey4y2y4y1))(y2ey4y2y4y1 + ey4y2y1) + y1 tanh(ey4y2y4y2)
y ′4 = 1
y1(0) = x
y2(0) = µ
y3(0) = 1
y4(0) = 1

y3(T)

x

Other paths could be used.
E.g. if one wants better and better precision, or that this
works even for t ≥ 1.

y(t) = (x , µ, abs(
1 + tx − abs(tx − 1, tµ)

2
, tµ), t)

using min(a, b) = (a + b − |a− b|)/2.

27

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem3 Every computable function can be computed in
that sense, and conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

3OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]

28

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem3 Every computable function can be computed in
that sense, and conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

3OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]

28

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem3 Every computable function can be computed in
that sense, and conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

3OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]

28

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem3 Every computable function can be computed in
that sense, and conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

3OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]

28

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem3 Every computable function can be computed in
that sense, and conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

3OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]

28

Formal Theorem 4

Let a, b ∈ Q.

f ∈ C 0([a, b],R) is computable

iff

∃ polynomials p, q s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if t > T = 1 then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after time T = 1

Picture:

tT=1

f (x)=y3(T)

y(0)=q(x ,µ)

4OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]

29

Formal Theorem 4

Let a, b ∈ Q.

f ∈ C 0([a, b],R) is computable

iff

∃ polynomials p, q s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1
I y satisfies a pODE

I if t > T = 1 then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after time T = 1

Picture:

tT=1

f (x)=y3(T)

y(0)=q(x ,µ)

4OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]

29

Menu

Back to Foundations of Computer Science

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Some applications

The subject of this course

30

Time complexity for continuous systems

Variable t is rather arbitrary.

y(0) = g(x) y ′ = h(y)

t

f(x)

g(x)

y1(T)

T=1

z(t)=y(et)

;

z(0) = g̃(x) z ′ = h̃(z)

t

f(x)

g̃(x)

z1(t)

T=1

y1(T)

w(t)=y
(
ee

t
)

;

w(0) = ĝ(x) w ′ = ĥ(w)

t

f(x)

ĝ(x)

w1(t)

T=1

y1(T)

31

Time complexity for continuous systems

Variable t is rather arbitrary.

y(0) = g(x) y ′ = h(y)

t

f(x)

g(x)

y1(T)

T=1

z(t)=y(et)

;

z(0) = g̃(x) z ′ = h̃(z)

t

f(x)

g̃(x)

z1(t)

T=1

y1(T)

w(t)=y
(
ee

t
)

;

w(0) = ĝ(x) w ′ = ĥ(w)

t

f(x)

ĝ(x)

w1(t)

T=1

y1(T)

31

Time complexity for continuous systems

Variable t is rather arbitrary.

y(0) = g(x) y ′ = h(y)

t

f(x)

g(x)

y1(T)

T=1

z(t)=y(et)

;

z(0) = g̃(x) z ′ = h̃(z)

t

f(x)

g̃(x)

z1(t)

T=1

y1(T)

w(t)=y
(
ee

t
)

;

w(0) = ĝ(x) w ′ = ĥ(w)

t

f(x)

ĝ(x)

w1(t)

T=1

y1(T)

31

A Simple & Key Idea: curvilinear abscissa

t

f(x)

q(x)

y1(t)

{
y(0)= q(x)
y ′(t)= p(y(t))

Length based: T

`(t) = length of y over [0, t]

=

∫ t

0
‖p(y(u))‖∞ du

Consider parametrization

t = length of y over [0, t]

I.e.:
Follow curve at constant speed.

32

Main Statement: Complexity

Theorem5 Any polynomial time computable function can be
computed in polynomial length, and conversely.

The notion of polynomial time computable function can
be defined using pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define polynomial time computable functions.

5OB, D. Graça, A. Pouly ICALP Track B Best Paper Award [?], Journal of
the ACM [?]

33

Main Statement: Complexity

Theorem5 Any polynomial time computable function can be
computed in polynomial length, and conversely.

The notion of polynomial time computable function can
be defined using pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define polynomial time computable functions.

5OB, D. Graça, A. Pouly ICALP Track B Best Paper Award [?], Journal of
the ACM [?]

33

Main Statement: Complexity

Theorem5 Any polynomial time computable function can be
computed in polynomial length, and conversely.

The notion of polynomial time computable function can
be defined using pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define polynomial time computable functions.

5OB, D. Graça, A. Pouly ICALP Track B Best Paper Award [?], Journal of
the ACM [?]

33

Formal Theorem
Let a, b ∈ Q.

f ∈ C 0([a, b],R) is polynomial-time computable

iff

∃ polynomials p, q,Ω s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(‖x‖∞ , µ) then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after a polynomial length

Picture:

leny (0, t)T=Ω(x ,µ)

f (x)=y3(T)

y(0)=q(x ,µ)

34

Formal Theorem
Let a, b ∈ Q.

f ∈ C 0([a, b],R) is polynomial-time computable

iff

∃ polynomials p, q,Ω s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1
I y satisfies a pODE

I if leny (0, t) > Ω(‖x‖∞ , µ) then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after a polynomial length

Picture:

leny (0, t)T=Ω(x ,µ)

f (x)=y3(T)

y(0)=q(x ,µ)

34

For Discrete People
Fix a “reasonable” way to encode words w , length of input, and
decision:

For example ψ(w) =
(∑|w |

i=1 wik
−i , |w |

)
, and > 1, 6 −1.

Then:

L ⊆ {0, 1}∗ is polynomial-time computable
iff

∃ polynomials p, q,Ω s.t. ∀w ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(ψ(w)) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(|w |) then |y1(t)| > 1

I decision is made after a polynomial length

I w ∈ L iff y1(t) > 1

I and corresponds to L
Picture:

leny (0, t)T=Ω(|w |)

>1 or 6−1

y(0)=q(ψ(w)))

35

For Discrete People
Fix a “reasonable” way to encode words w , length of input, and
decision:

For example ψ(w) =
(∑|w |

i=1 wik
−i , |w |

)
, and > 1, 6 −1.

Then:

L ⊆ {0, 1}∗ is polynomial-time computable
iff

∃ polynomials p, q,Ω s.t. ∀w ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(ψ(w)) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1
I y satisfies a pODE

I if leny (0, t) > Ω(|w |) then |y1(t)| > 1
I decision is made after a polynomial length

I w ∈ L iff y1(t) > 1 I and corresponds to L
Picture:

leny (0, t)T=Ω(|w |)

>1 or 6−1

y(0)=q(ψ(w)))

35

Menu

Back to Foundations of Computer Science

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Some applications

The subject of this course

36

Sub-menu

Some applications
A Universal ODE
Biochemical Reaction Networks
More speculative applications

37

There exists a Universal ODE

Theorem6

There exists a fixed vector of polynomial p such that for

1. any continuous f : R→ R,
2. and continous ε : R→ R+

there exists some α ∈ Re such that

y(0) = α, y ′ = p(y(t))

has a unique solution y : R→ Rd such that

|y1(t)− f (t)| ≤ ε(t)

for all t.

6OB, A. Pouly ICALP [?]
38

Sub-menu

Some applications
A Universal ODE
Biochemical Reaction Networks
More speculative applications

39

Main Theorem7

I The systems of elementary biochemical reactions on finite
universes of molecules are (strong) Turing-complete in
differential semantics.

Considered systems: at most binary reactions with mass
action law kinetics

1. A + B
k·A·B−→ C

2. A
k·A−→ B + C

3. A
k·A−→ B

4.
k−→ A

5. A
k·A−→

7François Fages, Guillaume Le Guludec, OB, Amaury Pouly CMSB Best
Paper Award 2017 [?]

40

Sub-menu

Some applications
A Universal ODE
Biochemical Reaction Networks
More speculative applications

41

Finding zeros of a function:
x ′ = −f (x)

Linear Programming:

See e.g.: The Nature of

Computation, C. Moore and S.

Mertens, Oxford University Press.

Computing optimal
solutions:

Neural Networks, Deep
learning, Differential Neural
Computers, Neural Turing
Machines, and variants. . .

And Turing machines.

42

Finding zeros of a function:
x ′ = −f (x)

Linear Programming:

See e.g.: The Nature of

Computation, C. Moore and S.

Mertens, Oxford University Press.

Computing optimal
solutions:

Neural Networks, Deep
learning, Differential Neural
Computers, Neural Turing
Machines, and variants. . .

And Turing machines.

42

Menu

Back to Foundations of Computer Science

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Some applications

The subject of this course

43

Sub-menu

The subject of this course
THE question
Motivation 1: Models of Computation
Motivation 2: Effectivity in Analysis
Motivation 3: Algebraic Complexity
Motivation 4: Verification/Control

44

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

Turing machine approach: Recursive Analysis.

Continuous time analog models

Blum Shub Smale machines

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

Turing machine approach: Recursive Analysis.

Continuous time analog models

Blum Shub Smale machines

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

Turing machine approach: Recursive Analysis.

Continuous time analog models

Blum Shub Smale machines

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

Turing machine approach: Recursive Analysis.

Continuous time analog models

Blum Shub Smale machines

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

Turing machine approach: Recursive Analysis.

Continuous time analog models

Blum Shub Smale machines

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

Turing machine approach: Recursive Analysis.

Continuous time analog models

Blum Shub Smale machines

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

Turing machine approach: Recursive Analysis.

Continuous time analog models

Blum Shub Smale machines

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

with various motivations:

computability theory

lower bounds / upper bounds

verification

control theory

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

with various motivations:

computability theory

lower bounds / upper bounds

verification

control theory

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

with various motivations:

computability theory

lower bounds / upper bounds

verification

control theory

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

with various motivations:

computability theory

lower bounds / upper bounds

verification

control theory

. . .

45

Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

with various motivations:

computability theory

lower bounds / upper bounds

verification

control theory

. . .

45

Sub-menu

The subject of this course
THE question
Motivation 1: Models of Computation
Motivation 2: Effectivity in Analysis
Motivation 3: Algebraic Complexity
Motivation 4: Verification/Control

46

Motivation 1: Models of Computation

NACA Lewis Flight Propulsion Laboratory’s Differential Analyser

Question: What is the computational power of this machine?

47

Sub-menu

The subject of this course
THE question
Motivation 1: Models of Computation
Motivation 2: Effectivity in Analysis
Motivation 3: Algebraic Complexity
Motivation 4: Verification/Control

48

Motivation 2: Effectivity in Analysis

Question: Can we compute the maximum of a continuous function
over a compact domain? A point on which it is maximal?

49

Sub-menu

The subject of this course
THE question
Motivation 1: Models of Computation
Motivation 2: Effectivity in Analysis
Motivation 3: Algebraic Complexity
Motivation 4: Verification/Control

50

Motivation 3: Algebraic Complexity

Question: What is the complexity of Newton’s method?

51

Sub-menu

The subject of this course
THE question
Motivation 1: Models of Computation
Motivation 2: Effectivity in Analysis
Motivation 3: Algebraic Complexity
Motivation 4: Verification/Control

52

Motivation 4: Verification/Control
Model M made of a mixture of continuous/discrete parts.

Specification φ (e.g. reachability property).

Informal question: Can we avoid that?

Formal question:
M |= φ?

53

	Back to Foundations of Computer Science
	Descriptive Mathematics
	Descriptive Computer/Computability Science
	Descriptive Computer/Complexity Science
	Some applications
	A Universal ODE
	Biochemical Reaction Networks
	More speculative applications

	The subject of this course
	THE question
	Motivation 1: Models of Computation
	Motivation 2: Effectivity in Analysis
	Motivation 3: Algebraic Complexity
	Motivation 4: Verification/Control

