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A first classification
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Shannon’s General Purpose Analog Computer

The GPAC is a mathematical abstraction from Claude
Shannon (1941) of the Differential Analyzers.

[Graça Costa 03]: This corresponds to polynomial Ordinary
Differential Equations (pODEs), i.e. continuous time
dynamical systems of the form{

y(0)= y0

y ′(t)= p(y(t))

where
I y : I → Rd , t ∈ I
I and p is a (vector of) polynomials.
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A machine from 20th Century: Differential analyzers

Vannevar Bush’s 1938 mechanical

Differential Analyser

Underlying principles: Lord
Kelvin 1876.

First ever built: V. Bush
1931 at MIT.

Applications: from gunfire
control up to aircraft design

Intensively used during U.S.
war effort.

Electronic versions from late
40s, used until 70s
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A machine from 21th Century: Analog Paradigm Model-1

http://analogparadigm.com

Fully modular

Basic version.
I 4 integrators, 8 constants, 8 adders, 8 multipliers.
I 14 kgs.
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The General Purpose Analog Computer
Shannon’s 41 presentation:

Basic units:

k e0e1

constant: e0 = ke1

+Π e0
e1
e2

product: e0 = e1e2

e0
e1
e2

summer: e0 = −(e1 + e2)

e0

e(0)

e1

integrator:
e0 = −

∫ t
0 (e1(u)du + e(0))

(Feedback connections are allowed).

A function is GPAC-generated if it corresponds to the output
of some unit of a GPAC.
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Cosinus and sinus: x = cos(t), y = sin(t)

−1

cos(t) −sin(t)

x y


x ′(t)= −y(t)
y ′(t)= x(t)
x(0)= 1
y(0)= 0

⇒
{
x(t)= cos(t)
y(t)= sin(t)
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Let’s play the following game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations over Rd of type{

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials1

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1....m(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.

1With y0, and coefficients among 0, 1,−1.
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Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.

e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of y ′ = (y2,−y3y

2
2 , 1 + y4, 0),

y(0) = (0, 1, 0, 1)
4 arctan is the first projection of
y ′ = (y2 + y5y2 + y6y2 + y7y2,−y3y

2
2 , 1 + y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).
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Polynomial ODE descriptive mathematics

2 is +1(1), with +1 solution of y ′ = 1, y(0) = 1.

3 is +2(1), with +2 first projection of solution of
y ′ = (y2 + y3, 0, 0), y(0) = (1, 1, 1).

. . .

k is +k−1(1), with +k−1 first projection of solution of
y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (1, 1, . . . , 1).

−k is −k−1(−1), with −k−1 first projection of solution of
y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (−1,−1, . . . ,−1).

0 + z is the solution of +′(0, t) = 1, +(0, 0) = 0.

y + z is the solution of +′(t, z) = 1, +(0, z) = z .

0 ∗ z is the solution of ∗′(0, t) = 0, ∗(0, 0) = 0.

y ∗ z is the solution of ∗′(t, z) = z , +(0, z) = 0.
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y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (−1,−1, . . . ,−1).

0 + z is the solution of +′(0, t) = 1, +(0, 0) = 0.

y + z is the solution of +′(t, z) = 1, +(0, z) = z .

0 ∗ z is the solution of ∗′(0, t) = 0, ∗(0, 0) = 0.

y ∗ z is the solution of ∗′(t, z) = z , +(0, z) = 0.
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Polynomial ODE descriptive mathematics
1

1+t is the solution of y ′ = −y2, y(0) = 1
1
2 is 1

1+1

ln(1 + t) is the solution of y ′ = (y1,−y2
2 ), y(0) = (0, 1).

ln(2) is ln(1 + 1).

However the current game is not so interesting:

I 1
t and ln(t) are not in that class.

• 1
t

is the solution of y ′ = −y 2, y(1) = 1,
• ln(1 + t) is the solution of y ′ = (y1,−y 2

2 ), y(1) = (0, 1).

I 1
2+t is not in that class:

• 1
2+t

is the solution of y ′ = −y 2, y(0) = 1/2.

Let’s generalize a little bit our game
I y(x0) = y0 instead of y(0) = y0, with y0 pODE computable

constant.
I n-variables functions.
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A better game: n-variables functions, not so restricted
initial condition

We start from

0, 1, −1

and we consider (projections of) solutions of ordinary
differential equations over Rd of type{

y(x0) = y0

Jacobiany(x) = p(y(x))

where p is a (vector of) polynomials, y0 is in the class.

x

f (x)=y1(x)
f (1)

1

Terminology:

Such a function f (x) = y1...m(y) will be said to be generated.

f (1) will then be called a (pODE) computable real.
19



Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2

,y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1
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Facts and Properties
The class of generated functions include all previously
mentioned functions, and most of the (analytic) common
functions.

It is stable by many operations:

I if f and g can be generated, then f + g , f − g , fg , 1
f , f ◦ g

can be generated.

It is stable by ODE solving:

I if f can be generated, and y satisfies y ′ = f (y) then y can be
generated.

A generated function must be analytic2.

I Famous analytic non-generable functions: [Shannon 41]
• Euler’s Gamma function Γ(x) =

∫∞
0

tx−1e−tdt [Hölder 1887]
• Riemann’s Zeta function ζ(x) =

∑∞
k=0

1
kx

[Hilbert].

The set of pODE computable constants is a field.
2Equals to its Taylor expansion in every point.
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Polynomial ODE descriptive mathematics

A generated function must be analytic.

A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ
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Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “e−µ uniformly close” to a generable function:
I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(eµx)x

x

first projection of y ′ = (y4(1− y2
2 )y3 + y2, y4(1− y2

2 ), 0, 0),
y(0) = (0, 0, 0, eµ).
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Alternative statement
|x | is “uniformly close” to a generable function:

I Given µ, we need to feed eµ to the initial condition.
I Can we avoid this “strange”/”unnatural” dependance in the

initial condition?
I Yes, if we don’t ask for real time computation!

Replace real-time concept: By a more modern concept:

f (x) must be produced
at time x

with precision e−µ

f (x) must be produced
at some time T = T (x)

with precision e−µ

x

f (x)=y1(x)

tT

f (x)=y3(T )

y(0)

y(0) = F (0, µ) y(0) = (x , µ, y0)
f (x) = y1(x) f (x) = y1(T )

24
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This is a more general notion of computability

Key fact: Any generated function is computable in that sense.

Illustration for |x |

I Discrete time Computer Science reasoning: Given µ,

1. Compute e−µ

2. Then compute abs(x , µ) = tanh(e−µx)x

i.e. previous function
starting from (0, 0, 0, eµ)

I But we are in a continuous time world:

both steps can be done simultaneously !
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This is a more general notion of computability

Illustration for |x | continued:

I Simple idea: consider a path y(t) going from
y(0) = (x , µ, . . . ) to y(T ) = (x , µ, abs(x , µ), . . . )

where abs(x , µ) = tanh(e−µx)x is previous function.

• For example, for T = 1,

y(t) = (x , µ, abs(tx , tµ), t)

solution of y′(t) = (0, 0, py(y(t)), 1), y(0) = (x, µ, 1, 1),
with

I Graphically:

y3(T )

x

with |x | − e−µ 6 y3(T ) 6 |x |+ e−µ, x = y1(0), µ = y2(0)
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with
py (y(t)) =
(1−tanh2(ey4y2y4y1))(y2e
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I Graphically:
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If you want only polynomial ODEs:
I Do as in previous exercice for the system for |x |:


y ′1 = 0
y ′2 = 0
y ′3 = (1− tanh2(ey4y2y4y1))(y2ey4y2y4y1 + ey4y2y1) + y1 tanh(ey4y2y4y2)
y ′4 = 1
y1(0) = x
y2(0) = µ
y3(0) = 1
y4(0) = 1

y3(T )

x

Other paths could be used.
E.g. if one wants better and better precision, or that this
works even for t ≥ 1.

y(t) = (x , µ, abs( min (tx , 1), tµ), t)
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y3(T )

x

Other paths could be used.
E.g. if one wants better and better precision, or that this
works even for t ≥ 1.

y(t) = (x , µ, abs(
1 + tx − abs(tx − 1, tµ)

2
, tµ), t)

using min(a, b) = (a + b − |a− b|)/2.
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Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem3 Every computable function can be computed in
that sense, and conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

3OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]
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Formal Theorem 4

Let a, b ∈ Q.

f ∈ C 0([a, b],R) is computable

iff

∃ polynomials p, q s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if t > T = 1 then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after time T = 1

Picture:

tT=1

f (x)=y3(T )

y(0)=q(x ,µ)

4OB, D. Graça, A. Pouly Journal of the ACM [?]’s Improvement of OB, M.
Campagnolo, D. Graça, E. Hainry Journal of Complexity [?]
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Time complexity for continuous systems

Variable t is rather arbitrary.

y(0) = g(x) y ′ = h(y)

t

f(x)

g(x)

y1(T )

T=1

z(t)=y(et)

;

z(0) = g̃(x) z ′ = h̃(z)

t

f(x)

g̃(x)

z1(t)

T=1

y1(T )

w(t)=y
(
ee

t
)

;

w(0) = ĝ(x) w ′ = ĥ(w)

t

f(x)

ĝ(x)

w1(t)

T=1

y1(T )
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A Simple & Key Idea: curvilinear abscissa

t

f(x)

q(x)

y1(t)

{
y(0)= q(x)
y ′(t)= p(y(t))

Length based: T

`(t) = length of y over [0, t]

=

∫ t

0
‖p(y(u))‖∞ du

Consider parametrization

t = length of y over [0, t]

I.e.:
Follow curve at constant speed.
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Main Statement: Complexity

Theorem5 Any polynomial time computable function can be
computed in polynomial length, and conversely.

The notion of polynomial time computable function can
be defined using pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define polynomial time computable functions.

5OB, D. Graça, A. Pouly ICALP Track B Best Paper Award [?], Journal of
the ACM [?]
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Formal Theorem
Let a, b ∈ Q.

f ∈ C 0([a, b],R) is polynomial-time computable

iff

∃ polynomials p, q,Ω s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(‖x‖∞ , µ) then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after a polynomial length

Picture:

leny (0, t)T=Ω(x ,µ)

f (x)=y3(T )

y(0)=q(x ,µ)
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For Discrete People
Fix a “reasonable” way to encode words w , length of input, and
decision:

For example ψ(w) =
(∑|w |

i=1 wik
−i , |w |

)
, and > 1, 6 −1.

Then:

L ⊆ {0, 1}∗ is polynomial-time computable
iff

∃ polynomials p, q,Ω s.t. ∀w ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(ψ(w)) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(|w |) then |y1(t)| > 1

I decision is made after a polynomial length

I w ∈ L iff y1(t) > 1

I and corresponds to L
Picture:

leny (0, t)T=Ω(|w |)

>1 or 6−1

y(0)=q(ψ(w)))
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There exists a Universal ODE

Theorem6

There exists a fixed vector of polynomial p such that for

1. any continuous f : R→ R,
2. and continous ε : R→ R+

there exists some α ∈ Re such that

y(0) = α, y ′ = p(y(t))

has a unique solution y : R→ Rd such that

|y1(t)− f (t)| ≤ ε(t)

for all t.

6OB, A. Pouly ICALP [?]
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Main Theorem7

I The systems of elementary biochemical reactions on finite
universes of molecules are (strong) Turing-complete in
differential semantics.

Considered systems: at most binary reactions with mass
action law kinetics

1. A + B
k·A·B−→ C

2. A
k·A−→ B + C

3. A
k·A−→ B

4.
k−→ A

5. A
k·A−→

7François Fages, Guillaume Le Guludec, OB, Amaury Pouly CMSB Best
Paper Award 2017 [?]
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Finding zeros of a function:
x ′ = −f (x)

Linear Programming:

See e.g.: The Nature of

Computation, C. Moore and S.

Mertens, Oxford University Press.

Computing optimal
solutions:

Neural Networks, Deep
learning, Differential Neural
Computers, Neural Turing
Machines, and variants. . .

And Turing machines.
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Consider you preferred function f : R→ R.

Is f computable?

Several notions of computability for real functions

Turing machine approach: Recursive Analysis.

Continuous time analog models

Blum Shub Smale machines

. . .
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Motivation 1: Models of Computation

NACA Lewis Flight Propulsion Laboratory’s Differential Analyser

Question: What is the computational power of this machine?

47



Sub-menu

The subject of this course
THE question
Motivation 1: Models of Computation
Motivation 2: Effectivity in Analysis
Motivation 3: Algebraic Complexity
Motivation 4: Verification/Control

48



Motivation 2: Effectivity in Analysis

Question: Can we compute the maximum of a continuous function
over a compact domain? A point on which it is maximal?
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Motivation 3: Algebraic Complexity

Question: What is the complexity of Newton’s method?

51



Sub-menu

The subject of this course
THE question
Motivation 1: Models of Computation
Motivation 2: Effectivity in Analysis
Motivation 3: Algebraic Complexity
Motivation 4: Verification/Control

52



Motivation 4: Verification/Control
Model M made of a mixture of continuous/discrete parts.

Specification φ (e.g. reachability property).

Informal question: Can we avoid that?

Formal question:
M |= φ?
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