
Olivier Bournez

Version of October 28, 2021

2

Chapter 1

Preliminaries

These are Course Notes for MPRI Course 2.33.1.
Theories of Computation.

Any comment (even about orthography) welcome: send an email to bournez@lix.polytechnique.fr

3

4 CHAPTER 1. PRELIMINARIES

Contents

1 Preliminaries 3

2 Computing over an arbitrary structure 7
2.1 The Model . 7
2.2 Non-determinism . 10

2.2.1 Full non-determinism . 10
2.2.2 Digital non-determinism . 10

2.3 Space complexity? . 11

3 Non Uniform Polynomial Time 13
3.1 Class Ppoly . 13
3.2 Relating Ppoly to sparse and tally sets . 13
3.3 Known Facts about Ppoly . 14
3.4 Relating Ppoly to boolean circuits . 14

3.4.1 Boolean circuits . 14
3.4.2 Fundamental relation between circuits and computations . . . 17
3.4.3 Non uniform polynomial time . 17

3.5 Ppoly and “Analog/Advice” Automata . 18
3.5.1 “Analog/Advice” Automata . 18
3.5.2 In exponential time . 18
3.5.3 In polynomial time . 19

4 Circuits over a structure 21
4.1 Computing with circuits . 21

4.1.1 Circuits . 21
4.2 N P-completeness . 22

4.2.1 Rudimentary formulas . 23
4.2.2 P = NP? and quantifier elimination 25
4.2.3 NP-complete problems over the reals 25

4.3 Bibliographic notes . 26

5

6 CONTENTS

Chapter 2

Computing over an arbitrary
structure

Why are we convinced by the Church-Turing Thesis? An answer is that there are
many mathematical models, such as partial recursive functions, lambda-calculus,
or semi-Thue systems, which are equivalent to the Turing machine, but which are
also independent from any computational machinery. When computing over arbi-
trary structures, e.g., over the real numbers, the situation is not so clear. Seeking
machine independent characterizations of complexity classes can lend further cre-
dence to the importance of the classes and models considered.

We consider here the BSS model of computation over the real numbers intro-
duced by Blum, Shub and Smale in their seminal paper [Blum et al., 1989]. The
model was later on extended to a computational model over any arbitrary logical
structure [Goode, 1994, Poizat, 1995a]. Refer to the monograph [Blum et al., 1998]
for a general survey about the BSS model.

2.1 The Model

We introduce computability and complexity over an arbitrary structure. Detailed
accounts can be found in [Blum et al., 1998] —for structures like real and complex
numbers– or [Poizat, 1995a] –for considerations about more general structures.

Definition 2.1 A structure K = (
K, {opi }i∈I ,r1 . . . ,r`,0,1

)
is given by some un-

derlying set K, some operations (i.e. functions) {opi }i∈I , and a finite number of
relations r1, . . . ,r`. Constants correspond to operators of arity 0. While the index
set I may be infinite, the number of operators with arity greater or equal to 1
needs to be finite, that is, only symbols for constants may be infinitely many.

We will not distinguish here between operator and relation symbols and their
corresponding interpretations as functions and relations respectively over the un-
derlying set K. We assume that the equality relation = is a relation of the structure,

7

8 CHAPTER 2. COMPUTING OVER AN ARBITRARY STRUCTURE

and that there are at least two constant symbols, with different interpretations (de-
noted by 0 and 1) in the structure.

An example of structure is K = (R,+,−,×,=,≤, {c ∈R}). Another example, corre-
sponding to classical complexity and computability theory is K = ({0,1},=,0,1).

Remark 2.1 For any structure K as above, ({0,1},=,0,1) ⊆K .

We denote by K∗ = ⋃
i∈NKi the set of words over the alphabet K. The space K∗

is the analogue to Σ∗ the set of all finite sequences of zeros and ones. It provides the
inputs for machines over K .

For technical reasons we shall also consider the bi-infinite direct sum K∗ (this
will use basically to represent “tapes”’). Elements of this space have the form

(. . . , x−2, x−1, x0, x1, x2, . . .)

where xi ∈ K for all i ∈ Z and xk = 0 for k sufficiently large in absolute value. The
space K∗ has natural shift operations, shift left σ` : K∗ → K∗ and shift right σr :
K∗ →K∗ where

σ`(x)i = xi−1 and σr (x)i = xi+1.

The length of a word w ∈K∗ is denoted by |w |.

Example 2.1 The word πe
p
π2 is of length 4.

We now define machines over K following the lines of [Blum et al., 1998].

Definition 2.2 A machine over K consists of an input space I =K∗, an output
space O =K∗, and a register spacea S =K∗, together with a connected directed
graph whose nodes labelled 0, . . . , N correspond to the set of different instructions
of the machine. These nodes are of one of the five following types: input, output,
computation, branching and shift nodes. Let us describe them a bit more.

1. Input nodes. There is only one input node and is labelled with 0. Associ-
ated with this node there is a next node β(0), and the input map g I : I →
S .

2. Output nodes. There is only one output node which is labelled with 1. It
has no next nodes, once it is reached the computation halts, and the output
map gO : S →O places the result of the computation in the output space.

3. Computation nodes. Associated with a node m of this type there are a
next node β(m) and a map gm : S →S and some integer i . The function
gm replaces the component indexed by i of S by the value op(w1, . . . , wn)
where w1, w2, . . . , wn are components 1 to n of S and op is some operation
of the structure K of arity n.

The other components of S are left unchanged. When the arity n is zero,
m is called a constant node.

2.1. THE MODEL 9

Remark 2.2 A given machine uses only a finite number of constants,
since it has finitely many instructions.

aIn the original paper by Blum, Shub and Smale, this is called the state space. We rename it
register space to avoid confusions with the notion of ‘state’ in a Turing machine.

Remark 2.3 In order to compare different machines and to denote
the notion of reduction between them and completeness, one needs
to include all possible constants in the underlying structure K . Thus
the possibly infinite index set I .

4. Branch nodes. There are two nodes associated with a node m of this type:
β+(m) and β−(m). The next node is β+(m) if r (w1, . . . , wn) is true and
β−(m) otherwise. Here w1, w2, . . . , wn are components 1 to n of S and r is
some relation of the structure K of arity n.

5. Shift nodes. Associated with a node m of this type there is a next node
β(m) and a map σ : S →S . The σ is either a left or a right shift.

Several conventions for the contents of the register space at the beginning of
the computation have been used in the literature [Blum et al., 1998, Blum et al., 1989,
Poizat, 1995a]. We will not dwell on these details but focus on the essential
ideas in the proofs to come in the sequel: A simple convention is the follow-
ing: g I : I = K∗ → S with g I (w) = n.w1w2 . . . wn if word w = w1w2 . . . wn is
of length n.

Remark 2.4 A machine over K is essentially a Turing Machine, which is able to
perform the basic operations {opi } and the basic tests r1, . . . ,r` at unit cost, and
whose tape cells can hold arbitrary elements of the underlying setK [Poizat, 1995a,
Blum et al., 1998]. Note that the register space S above has the function of the
tape and that its component with index 1 plays the role of the scanned cell. In
what follows we will freely use the common expressions “tape”, “scanning head”,
etc., the translation between these concepts and a shifting register space with a
designated 1st position being obvious. In particular, a cell of the tape will some-
times also be called a register.

Definition 2.3 For a given machine M, the function ϕM associating its output
to a given input x ∈ K∗ is called the input-output function. We shall say that
a function f : K∗ → K∗ is computable when there is a machine M such that
f =ϕM .

Also, a set A ⊆ K∗ is decided by a machine M if its characteristic function
χA :K∗ → {0,1} coincides with ϕM .

We can now define some central complexity classes.

10 CHAPTER 2. COMPUTING OVER AN ARBITRARY STRUCTURE

Definition 2.4 A set S ⊂K∗ is in class PK (respectively a function f :K∗ →K∗
is in class FPK), if there exist a polynomial p and a machine M, so that for all
w ∈K∗, M stops in at most p(|w |) steps and M accepts iff w ∈ S (respectively, M
computes function f (w)).

This notion of computability corresponds to the classical one for structures over
the booleans or the integers, and corresponds to the one of Blum Shub and Smale in
[Blum et al., 1989] over the real numbers.

Proposition 2.1 (i) The class PK is the classical P when K = ({0,1},=,0,1).

(ii) The class PK is the class PR of [Blum et al., 1989] when K = (R,+,−,×,=,≤, {c ∈R}).

2.2 Non-determinism

As in the classical setting, non-deterministic polynomial time over a given structure
K can be defined in several equivalent ways, including syntactic descriptions, or
semantic definitions (see [Blum et al., 1998]).

2.2.1 Full non-determinism

One can introduce:

• A decision problem A is in NPK if and only if there exists a decision problem
B in PK and a polynomial pB such that x ∈ A if and only if there exists y ∈K∗
with |y | ≤ pB (|x|) satisfying 〈x, y〉 is in B .

• A decision problem A is in coNPK if and only if there exists a decision problem
B in PK and a polynomial pB such that x ∈ A if and only if for all y ∈K∗ with
|y | ≤ pB (|x|), 〈x, y〉 is in B .

2.2.2 Digital non-determinism

One can also introduce:

• A decision problem A is in NDPK if and only if there exists a decision problem
B in PK and a polynomial pB such that x ∈ A if and only if there exists y ∈
{0,1}∗ with |y | ≤ pB (|x|) satisfying 〈x, y〉 is in B .

• A decision problem A is in coNDPK if and only if there exists a decision prob-
lem B in PK and a polynomial pB such that x ∈ A if and only if for all y ∈ {0,1}∗
with |y | ≤ pB (|x|), 〈x, y〉 is in B .

2.3. SPACE COMPLEXITY? 11

2.3 Space complexity?

One may want not only to talk about time, but other resources such as space. How-
ever, a result by Christian Michaux [Michaux, 1989] shows the irrelevancy of this no-
tion in a broad context, and hence the difficulty in defining easily a counterpart for
classical class PSPACE, at least when talking about structures over the reals:

Theorem 2.1 In the BSS-model over the structure (R,+,−, x 7→ x/2,=,<), every
polynomial time decision problem can be solved by an algorithm working in
polynomial time needing constant additional space.

12 CHAPTER 2. COMPUTING OVER AN ARBITRARY STRUCTURE

Chapter 3

Non Uniform Polynomial Time

3.1 Class Ppoly

In order to talk about polynomial time, we need to talk about complexity class Ppoly.
In computational complexity theory, an advice string is an extra input to a Turing

machine which is allowed to depend on the length n of the input, but not on input
itself. A decision problem is in the complexity class P/ f (n) if there is a polynomial
time Turing machine M with the following property: for any n, there is an advice
string A of length f (n) such that, for any input x of length n, the machine M correctly
decides the problem on the input x, given x and A.

Ppoly is obtained by considering there case where functions f correspond to
polynomials.

More formally, this correspond to the following definition.

Definition 3.1 (Ppoly) Ppoly is the class of languages B such that there is some
language A recognised in polynomial time (i.e. A ∈ P), some function f :N→Σ∗
and some polynomial p such that for all n, | f (n)| ≤ p(n), and

B = {x| < x, f (|x|) >∈ A}.

3.2 Relating Ppoly to sparse and tally sets

A set S ⊂ Σ∗ is said to be sparse if there exists a polynomial p(n) such that for every
n, S has less than p(n) words of length ≤ n.

P(S) denotes the languages recognised in polynomial time with oracle S.

Theorem 3.1 Ppoly =⋃
S spar se P(S).

Proof: We prove that a set L is in Ppoly iff there is a sparse set S such that L ∈ P (S).

13

14 CHAPTER 3. NON UNIFORM POLYNOMIAL TIME

Assume that L ∈ Ppoly via the advice function f and the set A ∈ P. Define S as
follows:

S = {< 0n , w > |w is a prefix of f (n) >}.

S is sparse: each word in S of length m is of the form < 0n , w > for n ≤ m. There
are m + 1 possible values of n. Each of them contributes at most m + 1 different
prefixes of f (n), one for each length up to m. The total number of words of length
m is at most O(m2).

Now L is in P (S), as using S as oracle, one can easily build the advice z (extending
bit by bit z by 0 or 1’s, querying for each bit whether it should be 0 or 1), and then
use it to compute L.

Conversely, assume that L ∈ P (S), where S is sparse. Let p be the polynomial
bounding the running time of the machine that decides L. Define the advice func-
tion such that, for each n, it gives the encoding of the set of words in S up to size
p(n). This is a polynomially long encoding. Using this advice, this is easy to simu-
late queries to S in polynomial time. �

A set S ⊂Σ∗ is said to be tally if S ⊂ {a}∗ for some symbol a.
It is possible to prove the following (left as an exercice):

Theorem 3.2 Ppoly =⋃
S t al l y P(S).

Proof: <Left as an exercice> �

3.3 Known Facts about Ppoly

• Ppoly contains some non-computable languages: consider some non-computable
A ⊂N, and consider the language A made of words of length n with n ∈ A. A
is non-computable, as A is. By definition, it is indeed in P poly, as the func-
tion that maps n to 0 or 1 according to whether n ∈ A or not is a valid advice
function.

• Ppoly contains P and BPP (Adleman’s theorem).

• If NP ⊂ Ppoly then the polynomial hierarchy collapses toΣP
2 (Karp-Lipton’s the-

orem).

3.4 Relating Ppoly to boolean circuits

3.4.1 Boolean circuits

One can see a boolean circuit as a mean to describe a boolean function as a sequence
of OR (∨), AN D (∧) and NOT (¬) on bits given as input.

Definition 3.2 (Boolean circuit) Let n be an integer. A boolean circuit with n
inputs and m output is a DAG (directly oriented graph) with

3.4. RELATING PPOLY TO BOOLEAN CIRCUITS 15

• n inputs, that is to say n vertices without ingoing arc.

• m outputs, that is to say m vertices without outgoing arc

• each input is labeled either by constant 0, or by 1 or by some symbol of
variable x1, x2, · · · , xn .

• any other vertex is a called a gate and is labeled either by ∨, ∧ or ¬. The
fanin is the ingoing degree of a gate.

• gates labeled by ∨ or ∧ have fanin 2.

• gates labeled by ¬ have fanin 1.

Example 3.1 Here is an example of circuit corresponding to function S(x, y, z) =
(¬x ∨ y)∧ (x ∨ z).

y ¬

x x

z

∨
∨

∧

Observe that several inputs can be labeled by a same symbol. We authorise our-
selves graphically to share inputs.

Example 3.2 The circuit of example 3.1 can also be represented as

y ¬

x

z

∨
∨

∧

Example 3.3 Here is a less trivial example.

16 CHAPTER 3. NON UNIFORM POLYNOMIAL TIME

x1 x2 x3 x4

¬ ¬ ¬ ¬
∧ ∧ ∧ ∧

∨ ∨
¬ ¬

∧ ∧
∨

Given a boolean circuit C with n inputs and m outputs, and x ∈ {0,1}n , the output
of C on x = (x1, · · · , xn), written C (x) is defined inductively as expected:

Definition 3.3 (Boolean function associated to a circuit) More formally, for ev-
ery vertex ν from C , one defines its value val (ν) ∈ {0,1} on x = (x1, · · · , xn) as
follows:

• if ν is some input labeled with 0, then val (ν) = 0;

• if ν is some input labeled with 1, then val (ν) = 1;

• if ν is some input labeled with a variable xi , then val (ν) = xi ;

• if ν is a gate ∧, then val (ν) is the logical conjonction of values val (e1) and
val (e2) of its inputs e1 and e2: val (ν) =∧(val (e1), val (e2));

• if ν is a gate ∨, then val (ν) is the logical disjunction of the values val (e1)
ad val (e2) of its inputs e1 et e2: val (ν) =∨(val (e1), val (e2));

• if ν is a gate ¬, then val (ν) is the logical negation of its input e: val (ν) =
¬(val (e)).

The value C (x) of the circuit is then given by the value val (ν1), val (ν2) . . . val (νm)
of its m outputs: this is an element of {0,1}m

Example 3.4 The circuit of Example 3.1 computes the function from {0,1}3 to
{0,1} defined by S(x, y, z) = (¬x ∨ y)∧ (x ∨ z),

Example 3.5 The circuit of Example 3.3 computes the function PARI T Y from
{0,1}4 to {0,1} that values 1 iff an odd number of its arguments values 1.

The size of a circuit C , is the number of vertices of the circuit. Its depth is the
length of the longest path from an input to the output.

3.4. RELATING PPOLY TO BOOLEAN CIRCUITS 17

Example 3.6 The circuit of example 3.3 is of size 19 and of depth 6.

One terms sub-circuit of a circuit C what is expected: this is to say, a subset C ′ of
the circuit that has the property that if a gate is among this subset, then any gate with
some outgoing link towards this gate is also in this subset. In particular, the principal
sub-circuit associated to a gate p is formed by the set of the gates of C that are on
a path that goes to p. The immediate sub-circuits of a circuit C are the principal
sub-circuit(s) corresponding to the gate(s) with an outgoing link to the output.

A given circuit with one input recognizes only words over {0,1} of fixed length.
If one wants to consider recognition of languages, one needs to talk about family of
circuits (see e.g. [Balcázar et al., 1988, Papadimitriou, 1994]) : A family of Boolean
circuits C = (Ci)i∈N, with Ci with i inputs and 1 output, recognizes a language L ⊂
Σ∗, iff for all w ∈Σ∗, w ∈ L if and only if C|w | accepts w .

We assume fixed a reasonable way to encode circuits: evaluation of a circuit C
on some input x can be done in polynomial time. Denote by CIRCUITVALUE the
decision problem that consists in evaluating C on input x, given C and x.

3.4.2 Fundamental relation between circuits and computations

Polynomial time can be characterised by circuits:

Theorem 3.3 [P versus Ppoly (see e.g. [Papadimitriou, 1994])] A language L ⊂
Σ∗ is recognised in polynomial time by a Turing machine, iff

1. L is recognised by a family of circuits of polynomial size: there exists some
polynomial p, with si ze(Cn) = p(n) for all n.

2. the function that maps 1n to the encoding of circuit Cn is computable in
polynomial time (and even in logarithmic space).

Proof: The idea of the direct sense of the proof is to see that for a given length, as
the Turing machine M works in less than p(n) steps for some polynomial p, using
less than q(n) cells of the tape, by unfolding the program of M (as in the proof of
Cook’s Theorem (NP-completeness of SAT)), one can build a circuit Cn that decides
if a word w of length n is accepted by M .

Then to observe that the circuit Cn , being obtained as a simple unfolding of the
program of M , the function that maps 1n to the encoding of circuit Cn is indeed
computable in polynomial time.

Conversely, given a word w , one can compute its length n = |w |, then Cn and
simulates Cn on w . With the two hypotheses, all of this can be done in polynomial
time, and hence the language L is in P. �

3.4.3 Non uniform polynomial time

Class Ppoly corresponds to non-uniform polynomial time, since it consists in relax-
ing second condition in next characterization of polynomial time.

18 CHAPTER 3. NON UNIFORM POLYNOMIAL TIME

Theorem 3.4 A language L ⊂ Σ∗ is in Ppoly iff L is recognised by a family of cir-
cuits of polynomial size: there exists some polynomial p, with si ze(Cn) = p(n)
for all n.

Proof: Let L be a set with polynomial size circuits. Let Cn be the encoding of
the polynomial size circuit that recognises L ∩Σn , where Σn is the set of words of
length n. We have |Cn | ≤ p(n) for some polynomial p. Define the advice function f
as f (n) =Cn . For any length n, and for any w of length n, we have w ∈ L iff Cn out-
puts 1 on input w iff < w, f (|w |) >∈ CV P , where CV P is the Circuit Value Problem
(evaluate the value of a circuit on some input). As CV P is in P, L is in Ppoly.

Conversely, let L be in Ppoly. By definition there exists a set A in P and an advice
function f such that x ∈ L iff w ∈ L iff < w, f (|w |) >∈ A. Since A is in P, there exists a
polynomial time Turing machine M such that A = L(M). By the same idea as in the
proof of Theorem 3.3, there is a circuit that outputs 1 iff its input is in B .

The idea is then to consider as family of circuits the family of circuits that cor-
responds to each length, plugging the advice f (n) in the circuit corresponding to
length n. �

3.5 Ppoly and “Analog/Advice” Automata

3.5.1 “Analog/Advice” Automata

It may help to consider the following (rather artificial) model (following [Bournez and Cosnard, 1996]).

Definition 3.4 An analog automaton (or advice automaton) (with k stacks) is
exactly like a pushdown automata with k stacks, except that it has the possibility
in addition of making appear in time 1 an infinite word W ∈Σω (that we can call
advice) over some stack: in time 1, the content of the stack is replaced by W .

As the program of an analog automaton is finite, there is only a finite number of
possible advices that a given machine can make appear.

If you prefer considering that pushdown automata are actually Turing machines,
if you prefer talking only about Turing machines, this corresponds to consider Tur-
ing machines that can replace the content of the tape at the right (or left) of the head
by some infinite words W in time 1.

More formal definitions can be found in [Bournez and Cosnard, 1996], but ba-
sically they are only formalising the previous ideas. The question is then to under-
stand what can be computed by analog automata.

3.5.2 In exponential time

Theorem 3.5 Every language L ⊂ {0,1}∗ can be recognised by a (deterministic)
analog two stack automaton in exponential time.

3.5. PPOLY AND “ANALOG/ADVICE” AUTOMATA 19

Proof: Let L ⊂ {0,1}+ be a language. Let the word γ, be the concatenation, with
delimiters, by increasing word length order, of all the words of L. Let M be an analog
automaton that, on input w ∈ {0,1}+ on its first stack, makes advice γ appear on
its second stack. Then M seeks in γ if w is present. If it is, M accepts. M stops
processing as soon as it encounters a word of length greater than the length of w . L
is recognised by M in exponential time. �

3.5.3 In polynomial time

Theorem 3.6 The languages L ⊂ {0,1}∗ accepted by analog (deterministic) two
stack automata in polynomial time are exactly the languages belonging to the
complexity class P/pol y.

Proof: Let k be the number of different advices that the analog automaton M
can possibly use. In polynomial time p(n), M can at most read the p(n) first letters
of the k advices. So it is possible to simulate M with a Turing machine M ′, which
gets as advice of polynomial size kp(n) the p(n) first letters of each of the k advices
of M , and then simulates M . Hence the computational power of analog automata in
polynomial time is bounded by P/pol y .

Let L be a language in P/pol y . By definition, L is recognised by a Turing machine
M ′ with an advice function f : N→ {0,1}∗. We can construct a word γ of infinite
length as the concatenation, with delimiters, of f (1), f (2),etc.... In order to recog-
nise L, an analog automaton M , on input w ∈ {0,1}+, first makes advice γ appear.
Then M seeks in γ the value of f (|w |). This operation can be done in polynomial
time, since there exists a polynomial p, such that, for all i ∈ N, the size of f (i) is
bounded by p(i): so M has at most to read p(1)+p(2)+·· ·+p(|w |) characters, that
is at most a polynomial number of characters. Finally, M simulates Turing machine
M ′ on (w, f (|w |)). Hence L is recognised by M in polynomial time. �

20 CHAPTER 3. NON UNIFORM POLYNOMIAL TIME

Chapter 4

Circuits over a structure

4.1 Computing with circuits

In this section we introduce the notion of circuit over K , and recall some links of
this computational device with the BSS model of computation.

Remark 4.1 A structure K = (
K, {opi }i∈I ,r1 . . . ,r`,0,1

)
has, by definitions, op-

erations (i.e., functions) and relations. For practical reasons, and mainly to sim-
plify the presentation, we will consider from now on relations also as particular
functions, i.e., as functions that take values in {0,1}: 0 corresponds to f al se, 1 to
tr ue.

4.1.1 Circuits

Definition 4.1 A circuit over the structure K is an acyclic directed graph whose
nodes, called gates, are labeled either as input gates of in-degree 0, output gates
of out-degree 0, selection gates of in-degree 3, or by a relation or an operation of
the structure, of in-degree equal to its arity.

The evaluation of a circuit on a given assignment of values ofK to its input gates
is defined in a straightforward way, all gates behaving as one would expect. We just
note that any selection gate tests whether its first parent is labeled with 1, and re-
turns the label of its second parent if equality with 1 holds, or the label of its third
parent if not. This evaluation defines a function fromKn toKm where n is the num-
ber of input gates and m that of output gates. See [Poizat, 1995b, Blum et al., 1998]
for formal details.

We say that a family {Cn | n ∈ N} of circuits computes a function f : K∗ → K∗
when the function computed by the nth circuit of the family is the restriction of f to
Kn . We say that this family is P-uniform when there exist constants α1, . . . ,αm ∈ K
and a deterministic Turing machine M satisfying the following. For every n ∈ N,
the constant gates of Cn have associated constants in the set {α1, . . . ,αm} and M

21

22 CHAPTER 4. CIRCUITS OVER A STRUCTURE

computes a description of the i th gate of the nth circuit in time polynomial in n (if
the i th gate is a constant gate with associated constant αk then M returns k instead
of αk).

Remark 4.2 It is usually assumed that gates are numbered consecutively with
the first gates being the input gates and the last ones being the output gates. In
addition, if gate i has parents j1, . . . , jr then one must have j1, . . . , jr < i . Unless
otherwise stated we will assume this enumeration applies.

We are now going to use the notion of circuits as a computational model and
compare this model to algorithms over some structure M.

We assume that some encoding of circuits is fixed: Recall that a circuit corre-
sponds to a labeled graph, and hence, this basically only require to fix some encod-
ing of label graphs.

In [Poizat, 1995b] the following result is proved.

Theorem 4.1 ([Poizat, 1995b]) Assume M is a BSS machine over K comput-
ing a function fM . Denote by α1, . . . ,αm ∈ K the constants used by M. Assume
moreover that, for all inputs of size n, the computation time of M is bounded by
t (n) ≥ n, and that the length of an output depends only on the size of its input.

Then, there exists a family {Cn | n ∈N} of circuits such that Cn has n +m in-
puts (x1, . . . , xn , y1, . . . , ym), has size polynomial in t (n), and, for all x = x1. . . . xn ,
Cn(x1, . . . , xn ,α1, . . . ,αm) equals the output of fM on input x.

Moreover, there exists a deterministic Turing machine computing a descrip-
tion of the i th gate of the nth circuit in time polynomial in t (n).

Remark 4.3 The requirements of a homogeneous computation time bound and
output size are not too strong: clocking an arbitrary BSS machine, and adding
extra idle characters to its output allows one to build a BSS machine which com-
plies with these requirements.

The proof consists in unfolding the computation of the machine on inputs of
size n, and is basically a generalisation of Theorem 3.3.

4.2 N P-completeness

The problem of circuit satisfiability with parameters is the following: given a circuit
C (x, y) over structure K = (

K, {opi }i∈I ,r1 . . . ,r`,0,1
)
, and a word c = (c1, . . . ,ck) ∈

K∗ of same length than x, decide if it possible to set values in M to variables y =
(y1, · · · , yn) such that C (c, y) = 1.

The problem of circuit satisfiability with parameters with digital inputs is the
following: given a circuit C (x, y) over structure K = (

K, {opi }i∈I ,r1 . . . ,r`,0,1
)
, and a

word c = (c1, . . . ,ck) ∈K∗ of same length than x, decide if it possible to set values in
{0,1} to variables y = (y1, · · · , yn) such that C (c, y) = 1.

4.2. N P-COMPLETENESS 23

Theorem 4.2 Let K = (
K, {opi }i∈I ,r1 . . . ,r`,0,1

)
be a structure. Circuit satisfia-

bility with parameters over K is NP-complete over structure K .

Theorem 4.3 Let K = (
K, {opi }i∈I ,r1 . . . ,r`,0,1

)
be a structure. Circuit satisfia-

bility with parameters with digital inputs over K is NDP-complete over struc-
ture K .

Proof:[Of Theorem 4.2] The problem is in NP, since a circuit C with parameters
c is satisfiable if and only if there exists a word y of length n, where n is the number
of inputs of the circuit such that 〈C ,c, y〉 ∈ CV P , where CV P designs Circuit Value
Problem (determine the value of a given circuit on some given input). CV P is easily
shown to be in PK .

Now, let L be a language of NPK . By definition, there exists a problem A in PK

and a polynomial p such that for all word x, x ∈ L iff there exists some y ∈ K∗,
length(y) ≤ p(length(x)) with 〈x, y〉 ∈ A. According to equivalence of polynomial
time with circuits of polynomial size, determining if 〈x, y〉 ∈ A corresponds to a cir-
cuit C (possibly with parameters c ′) of size polynomial in length〈x, y〉, and hence in
length(x).

The function that maps x to C (x,c ′, y), where x,c ′ denote the parameters of cir-
cuit C , realises a reduction from L to the problem of circuit satisfiability. Indeed,
x ∈ L if and only if C (x,c ′, y) is satisfiable for some y . �

The proof of the second theorem is similar, restricting existential quantification
to {0,1}∗.

4.2.1 Rudimentary formulas

We can rewrite this result in the following way:

Definition 4.2 (Rudimentary formulas) Let K = (
K, {opi }i∈I ,r1 . . . ,r`,0,1

)
be

a structure. We call rudimentary formula over K a finite conjunction of formu-
las of the following types:

1. x = a, where a is an element ofK.

2. y = fi (x), where fi is a function of the structure.

3. r (x)∨ y = 0, where r j is a relation of the structure (including the equality
=)

4. ¬r (x)∨y = 1, where r j is a relation of the structure (including the equality
=).

5. x = 0∨x = 1.

24 CHAPTER 4. CIRCUITS OVER A STRUCTURE

6. x = ε∨ y = ε′, where ε,ε′ ∈ {0,1}.

7. x = ε∨ y = ε′∨ z = ε′′, where ε,ε′,ε′′ ∈ {0,1}.

A rudimentary formula is said to be satisfiable if it is possible to assign its vari-
ables in such a way that all its formulas becomes true.

Theorem 4.4 Let K = (
K, {opi }i∈I ,r1 . . . ,r`,0,1

)
a structure. The problem to de-

termine if a given rudimentary formula is satisfiable is NPK -complet.

Proof: This is clearly a problem of NPK .
To prove that it NPK -complete, one uses a reduction from circuit satisfiability:

One proves that a circuit is satisfiable if and only if a certain rudimentary formula of
polynomial size is satisfiable.

The trick is to introduce one variable for each gate of the circuit to represent the
value that it outputs, and to write that each such variable is expressible from the in-
puts of the gate, using the operator realised by the gate. Observe that every time this
can be done using a conjunction of a formulas of the above types. One then write
the conjunction of all the constraints and of the constraints that the output must be
1. The obtained rudimentary formula is of polynomial size, and is satisfiable if and
only if the circuit is. �

Remark 4.4 There is no reason that the satisfaction of rudimentary formula by
boolean entries is NDPK -complete since we have introduced variables such as
y = fi (x) which are not booleans, but elements ofK, the base set of the structure.

Corollary 4.1 The problem of satisfiability of a formula of≤ 3-SAT is NP-complete.

Proof: Since ≤ 3-SAT is in NP, it suffices to prove that any rudimentary formula
can always be written as a formula ≤ 3-SAT of polynomial size. A classical algorithms
corresponds to the structure B = ({0,1},0,1,=). A component of the rudimentary
formula of the form x = y ∨u = 0 can be replaced by (x = 0∨ y = 1∨u = 0)∧ (x =
1∨y = 0∨u = 0). A composant of the rudimentary formula of the form ¬x = y∨u = 1
can be replaced by (x = 0∨ y = 0∨u = 1)∧ (x = 1∨ y = 1∨u = 1). �

The problem k-SAT is the problem of satisfiability of a formula of a propositional
formula in conjonctive normal form with exactly k-literals per clause.

Theorem 4.5 The problem of the satisfiability of a 3-SAT formula is NP-complete.

Proof: Each clause of less than 3 literals can be replaced by a conjunction of
clauses with three literals. For example, α∨β can be replaced by (α∨β∨γ)∧ (α∨
β∨¬γ). The first is satisfiable if and only if the second is. �

4.2. N P-COMPLETENESS 25

Corollary 4.2 The problem of the satisfiability of a propositional calculus in
conjonctive normal form (SAT formula) is NP-complete.

Proof: Clearly 3-SAT ≤ SAT via the identity function. It suffices to observe that SAT ∈
NP. �

4.2.2 P = NP? and quantifier elimination

The problem of satisfiability of (free) formulas with parameters, consists in, given
some free formula ϕ(x, y) and some tuple a of elements of K, to determine if there
is some tuple b such that ϕ(a,b) is satisfied.

We can easily deduce from the previous discussion:

Theorem 4.6 In any structure K , the problem of the satisfiability of (free) for-
mulas with parameters is NPK -complete.

Proof: The rudimentary formulas are particular (free) formulas, and hence the
problem of the satisfiability of rudimentary formulas reduces to this problem. Now
the problem is clearly in NPK . �

We obtain the following results that relates formulas and circuits, via the ques-
tion of efficient elimination of quantifiers.

Theorem 4.7 A structure K satisfies PK = NPK if and only if there exists some
algorithm in PK with parameters c which transforms any existential formula
(without parameters) ∃y ϕ(x, y) into an equivalent circuit C (c, x).

Proof: If this latter property is satisfied, to test if ϕ(a, y) is satisfiable, one starts
by transforming the formula in it equivalent circuit, and one determines whether
C (c, a) values 1 or 0.

Conversely, let A be some polynomial algorithm, using the parameters c, that,
when given some formula ϕ(x, y), and a, determines if ϕ(a, y) is satisfiable. When
the length of the formula and of the tuple a are fixed, this can be translated into a
circuit C (c,ϕ, x) such that C (c,ϕ, a) values 1 ifϕ(a, y) is satisfiable, 0 otherwise (here
we abusively confuse ϕ with its encoding). The circuit C (c,ϕ, x) is then equivalent
to the formula ∃y ϕ(x, y). �

4.2.3 NP-complete problems over the reals

Theorem 4.8 (4−F E AS is NP-complete) In (R,+,−,×,=,<), the problem of the
existence of a (real) root to a polynomial in n variables with real coefficients of
total degree 4 is NP(R,+,−,×,=,<)-complete.

Proof: We prove first that any component of a rudimentary formula is equivalent
to a formula of the type ∃u Q(x,u) where Q is a polynomial.

26 CHAPTER 4. CIRCUITS OVER A STRUCTURE

This is clear for the cases 1. and 2. Now, x = y ∨u = 0 can be replaced by u × (y −
x) = 0. x 6= y ∨u = 1 can be replaced by ∃v (u −1)× ((x − y)× v −1) = 0.

x < y ∨u = 0 can be replaced by

∃v∃w u × ((y −x − v2)2 + (v ×w −1)2) = 0

y ≤ x ∨u = 1 can be replaced by

∃v (u −1)× (x − y − v2) = 0

Hence, the rudimentary formula can be replaced, modulo some new variables
that are existentially quantified, by a conjunction of polynomial equations of total
degree less than 6.

This can be decomposed in turn, by adding some new variables in equations of
type x − a = 0, x − y − z = 0, x − y × z = 0, which are all of degree 2. In the field of
the reals, expressing that all these polynomials are null is equivalent to state that the
sum of their squares is null. This sum is of total degree 4.

�

Other statements

Theorem 4.9 The structure (R,+,−,=) satisfies NP = NDP et P 6= NP, and has no
NP-complete problem. Same think for the non-uniform case.

Theorem 4.10 The structure (R,+,−,=,<) satisfies NP = NDP.

4.3 Bibliographic notes

The results of this chapter are from [Poizat, 1995b]. The relations between circuits
and algorithms is a classical result developed in most of the complexity manuals.
The application to the real knapsack problem is taken from [Koiran, 1994].

Bibliography

[Balcázar et al., 1988] Balcázar, J. L., Diáz, J., and Gabarró, J. (1988). Structural
Complexity I, volume 11 of EATCS Monographs on Theoretical Computer Science.
Springer.

[Blum et al., 1998] Blum, L., Cucker, F., Shub, M., and Smale, S. (1998). Complexity
and Real Computation. Springer-Verlag.

[Blum et al., 1989] Blum, L., Shub, M., and Smale, S. (1989). On a theory of computa-
tion and complexity over the real numbers; NP completeness, recursive functions
and universal machines. Bulletin of the American Mathematical Society, 21(1):1–
46.

[Bournez and Cosnard, 1996] Bournez, O. and Cosnard, M. (1996). On the compu-
tational power of dynamical systems and hybrid systems. Theoretical Computer
Science, 168(2):417–459.

[Goode, 1994] Goode, J. B. (1994). Accessible telephone directories. The Journal of
Symbolic Logic, 59(1):92–105.

[Koiran, 1994] Koiran, P. (1994). Computing over the reals with addition and order.
Theoretical Computer Science, 133(1):35–47.

[Michaux, 1989] Michaux, C. (1989). Une remarque à propos des machines sur R
introduites par blum, shub et smale. Comptes Rendus de l’Académie des Sciences
de Paris, Série I, 309:435–437.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity.
Addison-Wesley.

[Poizat, 1995a] Poizat, B. (1995a). Les petits cailloux. aléas.

[Poizat, 1995b] Poizat, B. (1995b). Les petits cailloux: Une approche modèle-
théorique de l’Algorithmie. Aléas Editeur.

27

	Preliminaries
	 Computing over an arbitrary structure
	The Model
	Non-determinism
	Full non-determinism
	Digital non-determinism

	Space complexity?

	 Non Uniform Polynomial Time
	Class Ppoly
	Relating Ppoly to sparse and tally sets
	Known Facts about Ppoly
	Relating Ppoly to boolean circuits
	Boolean circuits
	Fundamental relation between circuits and computations
	Non uniform polynomial time

	Ppoly and ``Analog/Advice'' Automata
	``Analog/Advice'' Automata
	In exponential time
	In polynomial time

	 Circuits over a structure
	Computing with circuits
	Circuits

	NP-completeness
	Rudimentary formulas
	P=NP? and quantifier elimination
	NP-complete problems over the reals

	Bibliographic notes

